Using Drones in the agriculture is the 21st century’s Smart way of collecting the data. Even in the crop insurance, the use of drones is prominent. Farmers can already use drones to soar over vast fields and check temperature, humidity or crop health. But these machines need so much power to fly that they can’t get very far without needing a charge.
Drones can fly for maybe 10 or 20 minutes before they need to charge again, whereas our bees can collect data for hours, informed an associate professor in the UW`s Paul G Allen School of Computer Science & Engineering. “We showed for the first time that it’s possible to actually do all this computation and sensing using insects in lieu of drones.”
While using insects instead of drones solves the power problem, this technique has its own set of complications: First, insects can’t carry much weight. And second, GPS receivers, which work well for helping drones report their positions, consume too much power for this application. To develop a sensor package that could fit on an insect and sense its location, the team had to address both issues.
Because bees don’t advertise where they are flying and because GPS receivers are too power-hungry to ride on a tiny insect, the team came up with a method that uses no power to localize the bees. The researchers set up multiple antennas that broadcasted signals from a base station across a specific area. A receiver in a bee’s backpack uses the strength of the signal and the angle difference between the bee and the base station to triangulate the insect’s position.
Now, engineers at the University of Washington have created a sensing system that is small enough to ride aboard a bumblebee. Because insects can fly on their own, the package requires only a tiny rechargeable battery that could last for seven hours of flight and then charge while the bees are in their hive at night. The research team presented its findings online on December 11 and in person at the ACM MobiCom 2019 conference.
“We decided to use bumblebees because they’re large enough to carry a tiny battery that can power our system, and they return to a hive every night where we could wirelessly recharge the batteries,” said co-author Vikram Iyer, a doctoral student in the UW Department of Electrical & Computer Engineering. “For this research we followed the best methods for care and handling of these creatures.”
Previously other research groups have fiftted bumblebees with simple backpacks ” by supergluing small trackers, like radio-frequency identification, or RFID, tags, to them to follow their movement. For these types of experiments, researchers put a bee in the freezer for a few minutes to slow it down before they glue on the backpack. When they’re finished with the experiment, the team removes the backpack through a similar process.